4.8 Article

Encapsulation and Stabilization of Gold Nanoparticles with Click Polyethyleneglycol Dendrimers

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 132, 期 8, 页码 2729-2742

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja909133f

关键词

-

资金

  1. Institut Universitaire de France
  2. Universite Bordeaux 1
  3. Centre National de la Recherche Scientique (CNRS)
  4. Agence Nationale de la Recherche
  5. Funda do para a Ciencia e a Tecnologia

向作者/读者索取更多资源

Water-soluble arene-cored clicked and non-clicked dendrimers terminated by 27, 81, and 243 triethyleneglycol (TEG) tethers (respectively generations G0, G1, and G2) have been synthesized and shown to form dendrimer-encapsulated gold nanoparticles (DEAuNPs) and dendrimer-stabilized gold nanoparticles (DSAuNPs). The dendrimers have been characterized by IR, H-1 NMR, C-13 NMR, size-exclusion chromatography, elemental analysis, MALDI-TOF mass spectroscopy, DOSY NMR, and dynamic light scattering. The AuNPs have been generated and stabilized by these PEGylated dendrimers using a variety of reduction modes, including NaBH4 in methanol, various single-electron metallocene-type reductants, and even in the absence of additional reductants. The active role of the clicked triazole rings, dendrimer generation, stoichiometry of Au precursor, and nature of the reductant and of the solvent are delineated, leading to DSAuNPs with the GO dendrimer and smaller DEAuNPs with the G1 and G2 dendrimers. Altogether, AuNPs in the size range from 1.8 to 42 nm were formed and characterized by transmission electron microscopy (TEM), high resolution TEM (HRTEM) and UV-vis spectroscopy. Both 1,2,3-triazole and PEGylated Percec-type dendrons are required in the dendrimer structure for the stabilization of AuNPs upon NaBH4 reduction of HAuCl4 in methanol. On the other hand, in the absence of other reductant in water, only PEGylated Percec-type dendrons in dendrimers were found to be indispensable, because of their semicavitand shape, for the spontaneous reduction of HAuCl4 and stabilization of DSAuNPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据