4.8 Article

Glycan Array on Aluminum Oxide-Coated Glass Slides through Phosphonate Chemistry

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 132, 期 38, 页码 13371-13380

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja1046523

关键词

-

资金

  1. Academia Sinica, Taiwan
  2. National Science Council, Taiwan [NSC 97-2113-M-001-009-MY2]

向作者/读者索取更多资源

A new type of glycan array covalently or noncovalently attached to aluminum oxide-coated glass (ACG) slides has been developed for studies of enzymatic reactions and protein binding. To prepare the noncovalent array, glycans with a polyfluorinated hydrocarbon (-C8F17) tail are spotted robotically onto the ACG slide surface containing a layer of polyfluorinated hydrocarbon terminated with phosphonate. After incubation and washing, the noncovalent array can be characterized by MS-TOF via ionization/desorption at a low laser energy without addition of matrix. A representive cellotetraose array was developed to study the activity and specificity of different cellulases and to differentiate the exo- and endoglucanase activities. To prepare the covalent array, glycans with a phosphonic acid tail were synthesized and spotted robotically onto the ACG slide surface. After incubation, the slides can be used directly for quantitative protein binding analysis. Compared to the preparation of glycan arrays on glass slides and other surfaces, this method of arraying using phosphonic acid reacting with ACG is more direct, convenient, and effective and represents a new platform for the high-throughput analysis of protein-glycan interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据