4.8 Article

Selectively Metallized Polymeric Substrates by Microcontact Printing an Aluminum(III) Porphyrin Complex

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 132, 期 2, 页码 765-772

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja908433p

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)

向作者/读者索取更多资源

We report a simple, low-cost method for the fabrication of copper wires and contacts on a wide range of flexible, rigid, and inert polymeric substrates. This method relies on procedures to oxidize the polymeric substrates to form surface-bound carboxylic acid groups. Patterning of an aluminum porphyrin ink using microcontact printing results in the formation of an aluminum porphyrin monolayer that is covalently anchored to the oxidized polymer surface via an aluminum-carboxylate bond. We characterize this monolayer using ultraviolet-visible absorption spectra, reflection-absorption infrared spectroscopy, and contact angle measurements. Patterned aluminum porphyrin monolayers bind a Pd/Sn colloidal catalyst from solution that subsequently initiates the selective deposition of copper in an electroless plating solution. We demonstrate the fabrication of patterned copper films on a variety of both flexible and rigid polymers with minimum feature sizes of 2 mu m over 2 cm(2) substrates. Measurements of electrical resistivity of copper wires fabricated on flexible poly(ethylene naphthalate) (PEN) substrates as a function of the bending radius show no negative impact on electrical performance at bending radii as small as 500 mu m. Permanently damaging the PEN substrate by creasing (corresponding to a bending radius of 100 mu m) results in only a modest increase in resistivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据