4.6 Article

Design, Synthesis and Structure-Activity Relationship Studies of Novel Survivin Inhibitors with Potent Anti-Proliferative Properties

期刊

PLOS ONE
卷 10, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0129807

关键词

-

资金

  1. NIH [R01CA148706, 1S10OD010678-01, 1S10RR026377-01]
  2. Center for Integrative and Translational Genomics
  3. Molecular Resource Center at the University of Tennessee
  4. University of Tennessee Research Foundation
  5. University of Tennessee Health Science Center

向作者/读者索取更多资源

The anti-apoptotic protein survivin is highly expressed in most human cancer cells, but has very low expression in normal differentiated cells. Thus survivin is considered as an attractive cancer drug target. Herein we report the design and synthesis of a series of novel survivin inhibitors based on the oxyquinoline scaffold from our recently identified hit compound UC-112. These new analogs were tested against a panel of cancer cell lines including one with multidrug-resistant phenotype. Eight of these new UC-112 analogs showed IC50 values in the nanomole range in anti-proliferative assays. The best three compounds among them along with UC-112 were submitted for NCI-60 cancer cell line screening. The results indicated that structural modification from UC-112 to our best compound 4g has improved activity by four folds (2.2 mu M for UC-112 vs. 0.5 mu M for 4g, average GI(50) values over all cancer cell lines in the NCI-60 panel). Western blot analyses demonstrated the new compounds maintained high selectivity for survivin inhibition over other members in the inhibition of apoptosis protein family. When tested in an A375 human melanoma xenograft model, the most active compound 4g effectively suppressed tumor growth and strongly induced cancer cell apoptosis in tumor tissues. This novel scaffold is promising for the development of selective survivin inhibitors as potential anticancer agents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据