4.8 Article

Ultrafast Proteinquake Dynamics in Cytochrome c

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 131, 期 8, 页码 2846-2852

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja8057293

关键词

-

向作者/读者索取更多资源

We report here our systematic studies of the heme dynamics and induced protein conformational relaxations in two redox states of ferric and ferrous cytochrome c upon femtosecond excitation. With a wide range of probing wavelengths from the visible to the UV and a site-directed mutation we unambiguously determined that the protein dynamics in the two states are drastically different. For the ferrous state the heme transforms from 6-fold to 5-fold coordination with ultrafast ligand dissociation in less than 100 Is, followed by vibrational cooling within several picoseconds, but then recombining back to its original 6-fold coordination in 7 ps. Such impulsive bond breaking and late rebinding generate proteinquakes and strongly perturb the local heme site and shake global protein conformation, which were found to completely recover in 13 and 42 ps, respectively. For the ferric state the heme however maintains its 6-fold coordination. The dynamics mainly occur at the local site, including ultrafast internal conversion in hundreds of femtoseconds, vibrational cooling on the similar picosecond time scale, and complete ground-state recovery in 10 ps, and no global conformation relaxation was observed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据