4.8 Article

Mechanism of Ethanol Synthesis from Syngas on Rh(111)

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 131, 期 36, 页码 13054-13061

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja903013x

关键词

-

资金

  1. Brookhaven National Laboratory with the U.S. Department of Energy [DE-AC02-98CH10886]

向作者/读者索取更多资源

Rh-based catalysts display unique efficiency and selectivity in catalyzing ethanol synthesis from syngas (2CO + 4H(2) -> C2H5OH + H2O). Understanding the reaction mechanism at the molecular level is the key to rational design of better catalysts for ethanol synthesis, which is one of major challenges for ethanol application in energy. In this work, extensive calculations based on density functional theory (DFT) were carried out to investigate the complex ethanol synthesis on Rh(111). Our results show that ethanol synthesis on Rh(111) starts with formyl formation from CO hydrogenation, followed by subsequent hydrogenation reactions and CO insertion. Three major products are involved in this process: methane; methanol, and ethanol, where the ethanol productivity is low and Rh(111) is highly selective to methane rather than ethanol or methanol. The rate-limiting step of the overall conversion is the hydrogenation of CO to formyl species, while the selectivity to ethanol is controlled by methane formation and C-C bond formation between methyl species and CO. The strong Rh-CO interaction impedes the CO hydrogenation and therefore slows down the overall reaction; however, its high affinity to methyl, oxygen, and acetyl species indeed helps the C-O bond breaking of methoxy species and therefore the direct ethanol synthesis via CO insertion. Our results show that to achieve high productivity and selectivity for ethanol, Rh has to get help from the promoters, which should be able to suppress methane formation and/or boost C-C bond formation. The present study provides the basis to understand and develop novel Rh-based catalysts for ethanol synthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据