4.8 Article

Nanowire Structured Hybrid Cell for Concurrently Scavenging Solar and Mechanical Energies

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 131, 期 16, 页码 5866-5872

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja810158x

关键词

-

资金

  1. DARPA [W31 P4Q-08-1-0009]
  2. KAUST Global Research Partnership
  3. NSF

向作者/读者索取更多资源

Conversion cells for harvesting solar energy and mechanical energy are usually separate and independent entities that are designed and built following different physical principles. Developing a technology that harvests multiple-type energies in forms such as sun light and mechanical around the clock is desperately desired for fully utilizing the energies available in our living environment. We report a hybrid cell that is intended for simultaneously harvesting solar and mechanical energies. Using aligned ZnO nanowire arrays grown on surfaces of a flat substrate, a dye-sensitized solar cell is integrated with a piezoelectric nanogenerator. The former harvests solar energy irradiating on the top, and the latter harvests ultrasonic wave energy from the surrounding. The two energy harvesting approaches can work simultaneously or individually, and they can be integrated in parallel and serial for raising the output current and voltage, respectively, as well as power. It is found that the voltage output from the solar cell can be used to raise the output voltage of the nanogenerator, providing an effective approach for effectively storing and utilizing the power generated by the nanogenerator. Our study demonstrates a new approach for concurrently harvesting multiple types of energies using an integrated hybrid cell so that the energy resources can be effectively and complementary utilized whenever and wherever one or all of them is available.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据