4.8 Article

Control of Bioelectrocatalytic Transformations on DNA Scaffolds

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 131, 期 25, 页码 8724-+

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja900718m

关键词

-

资金

  1. Israel Science Foundation
  2. EC BIOMEDNANO

向作者/读者索取更多资源

The spatial organization of biomolecutes on a DNA scaffold linked'to an electrode leads to programmed biocatalytic transformations. This is exemplified by the electrical contacting of glucose oxidase (GOx) linked to the DNA scaffold with the electrode. A nucleic acid functionalized with a ferrocene relay unit was hybridized with the DNA scaffold at a position adjacent to the electrode, and GOx functionalized with nucleic acid units complementary to the specific domain of the DNA template was hybridized with the DNA scaffold in a position remote from the electrode. Under these conditions, ferrocene-mediated oxidation of the redox center of GOx occurred, and the effective bioelectrocatalytic oxidation of glucose was activated. Exchange of the position of GOx and the electron-mediator groups prohibited the bioelectrocatalytic oxidation of glucose. In another system, a nucleic acid-functionalized microperoxidase-11 (MP-11) and the nucleic acid-modified GOx were hybridized with the adjacent and remote sites, respectively, on the DNA scaffold associated with the electrode. In this configuration, effective MP-11-catalyzed reduction of H2O2 generated by the GOx-catalyzed oxidation of glucose occurred, and the resulting bioelectrocatalytic cathodic currents were controlled by the concentration of glucose. Exchanging the positions of MP-11 and GOx on the DNA scaffold eliminated the MP-11-electrocataLyzed reduction of H2O2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据