4.8 Article

Electronic Coulombic Coupling of Excitation-Energy Transfer in Xanthorhodopsin

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 131, 期 40, 页码 14152-+

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja905697n

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Sciences, and Technology of Japan

向作者/读者索取更多资源

Electronic coupling of excitation-energy transfer (EET) in a retinal (RET) protein, xanthorhodopsin (xR), was studied theoretically. The protein, functioning as a light driven proton pump, contains a carotenoid antenna, salinixanthin (SXN), to collect tight energy for an RET chromophore through EET. The pseudo-Coulombic interaction (PCI) between the donor SXN and the acceptor RET molecules was calculated by a transition density fragment interaction (TDFI) method, which overcomes difficulty arising in the evaluation of PCI in xR by a conventional dipole-dipole (dd) method, at the ab initio TDDFT/SAC-CI level of theory. The result nicely agrees with the experimentally observed PCI. To examine the correlation between the SXN-RET alignment and the EET efficiency, we computed PCIs for SXN conformations that are virtually generated around the protein. The calculation shows that the optimal SXN alignment for the maximally tuned efficiency of EET is attained in the native xR. PCI in another retinal protein, archaerhodopsin-2, which also binds a carotenoid but lacks EET activity, was also evaluated. The computed PCI is negligibly small, well explaining the Lack of EET efficiency,

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据