4.8 Article

Understanding the Molecule-Surface Chemical Coupling in SERS

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 131, 期 11, 页码 4090-4098

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja809143c

关键词

-

资金

  1. Pennsylvania State University
  2. Research Computing and Cyberinfrastructure
  3. unit of Information Technology Services at Penn State

向作者/读者索取更多资源

The enhancement mechanism due to the molecule-surface chemical coupling in surface-enhanced Raman scattering (SERS) has been characterized using time-dependent density functional theory. This has been achieved with a systematical study of the chemical enhancement of meta- and para-substituted pyridines interacting with a small silver cluster (Ag-20). Changing the functional groups on pyridine enabled us to modulate the direct chemical interactions between the pyridine ring and the metal cluster. Surprisingly, we find that the enhancement does not increase as more charge is transferred from the pyridine ring to the cluster. Instead, we find that the magnitude of chemical enhancement is governed to a large extent by the energy difference between the highest occupied energy level (HOMO) of the metal and the lowest unoccupied energy level (LUMO) of the molecule. The enhancement scales roughly as (omega(X)/(omega) over bar (e))(4), where (omega) over bar (e) is an average excitation energy between the HOMO of the metal and the LUMO of the molecule and omega(X) is the HOMO-LUMO gap of the free molecule. The trend was verified by considering substituted benzenethiols, small molecules, and, silver clusters of varying sizes. The results imply that molecules that show. significant stabilization of the HOMO-LUMO gaps (such as those that readily accept pi-backbonding) would be likely to have strong chemical enhancement. The findings presented here provide the framework for designing new molecules which exhibit high chemical enhancements. However, it remains a challenge to accurately describe the magnitude of the Raman enhancements using electronic structure methods, especially density functional theory, because they often underestimate the energy gap.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据