4.8 Article

Heterogeneous Catalysis of a Copper-Coated Atomic Force Microscopy Tip for Direct-Write Click Chemistry

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 131, 期 19, 页码 6692-+

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja9015974

关键词

-

资金

  1. NSF [DMR-0520513]
  2. NSF-NSEC
  3. NSF-MRSEC
  4. Keck Foundation
  5. State of Illinois
  6. Northwestern University

向作者/读者索取更多资源

We report a constructive scanning probe lithography method that uses heterogeneous copper-coated atomic force microscopy tips to catalyze azide-alkyne cycloadditions (CuAAC) between solvated terminal alkyne molecules and azide-terminated self-assembled monolayers on silicon surfaces. Spatially controlled surface functionalization was carried out successfully with 50 mM ethanolic solutions of small molecules bearing terminal alkyne groups - propargylamine, 4-pentynoic acid, and an alkynyl-oligoethyleneoxide. We observed that reaction occurs only where the copper tip is in contact with an azide-terminated surface resulting in features with linewidths on the order of 50 nm. The extent of surface functionalization, as measured by changes in surface topography and lateral force microscopy, depends on the scanning force (31-350 nN) and scanning speed, with significant surface patterning observed even at speeds as high as 64 mu m/s. In contrast with related SPL techniques, this approach affords a direct-write lithographic approach to constructively modifying and patterning surfaces at the nanoscale without the need for auxiliary reagents. All that is required is (1) an azide surface, (2) a solution of a terminal alkyne, and (3) a copper-coated AFM tip. These advantages allow the direct attachment of a potentially limitless library of molecules that bear terminal alkyne functionalities, including biomolecules, under relatively mild conditions, with sub-100 nm spatial resolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据