4.8 Article

Determination of Multicomponent Protein Structures in Solution Using Global Orientation and Shape Restraints

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 131, 期 30, 页码 10507-10515

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja902528f

关键词

-

资金

  1. NCI of NIH
  2. CIT Intramural Research Program of the NIH
  3. NIH [GM082251, HL58758, GM62823, N01-CO-12400]
  4. National Cancer Institute

向作者/读者索取更多资源

Determining architectures of multicomponent proteins or protein complexes in solution is a challenging problem. Here we report a methodology that simultaneously uses residual dipolar couplings (RDC) and the small-angle X-ray scattering (SAXS) restraints to mutually orient subunits and define the global shape of multicomponent proteins and protein complexes. Our methodology is implemented in an efficient algorithm and demonstrated using five examples. First, we demonstrate the general approach with simulated data for the HIV-1 protease, a globular homodimeric protein. Second, we use experimental data to determine the structures of the two-domain proteins L11 and gamma D-Crystallin, in which the linkers between the domains are relatively rigid. Finally, complexes with K-d values in the high micro- to millimolar range (weakly associating proteins), such as a homodimeric GB1 variant, and with K-d values in the nanomolar range (tightly bound), such as the heterodimeric complex of the ILK ankyrin repeat domain (ARD) and PINCH LIM1 domain, respectively, are evaluated. Furthermore, the proteins or protein complexes that were determined using this method exhibit better solution structures than those obtained by either NMR or X-ray crystallography alone as judged based on the pair-distance distribution functions (PDDF) calculated from experimental SAXS data and back-calculated from the structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据