4.8 Article

Toward an Artificial Golgi: Redesigning the Biological Activities of Heparan Sulfate on a Digital Microfluidic Chip

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 131, 期 31, 页码 11041-11048

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja903038d

关键词

-

资金

  1. Div Of Information & Intelligent Systems
  2. Direct For Computer & Info Scie & Enginr [1019160] Funding Source: National Science Foundation
  3. NCRR NIH HHS [R41 RR023764-02, RR023764, R41 RR023764] Funding Source: Medline
  4. NHLBI NIH HHS [R01 HL094463, R01 HL062244, R01 HL096972-01, R01 HL096972, HL094463, R01 HL062244-08, HL62244] Funding Source: Medline
  5. NIGMS NIH HHS [R01 GM038060, R01 GM038060-20, GM38060, R01 GM090257] Funding Source: Medline

向作者/读者索取更多资源

Using digital microfluidics, recombinant enzyme technology, and magnetic nanoparticles, we have created a functional prototype of an artificial Golgi organelle. Analogous to the natural Golgi, which is responsible for the enzymatic modification of glycosaminoglycans immobilized on proteins, this artificial Golgi enzymatically modifies glycosaminoglycans, specifically heparan sulfate (HS) chains immobilized onto magnetic nanoparticles. Sulfo groups were transferred from adenosine X-phosphate 5'-phosphosulfate to the 3-hydroxyl group of the D-glucosamine residue in an immobilized HS chain using D-glucosaminyl 3-O-sulfotransferase. After modification, the nanoparticles with immobilized HS exhibited increased affinity for fluorescently labeled antithrombin III as detected by confocal microscopy. Since the biosynthesis of HS involves an array of specialized glycosyl transferases, epimerase, and sulfotransferases, this approach should mimic the synthesis of HS in vivo. Furthermore, our method demonstrates the feasibility of investigating the effects of multienzyme systems on the structure of final glycan products for HS-based glycomic studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据