4.8 Article

Multilength-Scale Chemical Patterning of Self-Assembled Monolayers by Spatially Controlled Plasma Exposure: Nanometer to Centimeter Range

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 131, 期 31, 页码 10984-10991

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja901619h

关键词

-

资金

  1. National Science Council in Taiwan through the National Nanoscience and Nanotechnology Program [97-2120-M-007-005]
  2. Foresight Taiwan Project [98-3011-P-007-001]

向作者/读者索取更多资源

We present a generic and efficient chemical patterning method based on local plasma-induced conversion of surface functional groups on self-assembled monolayers (SAMS). Here, spatially controlled plasma exposure is realized by elastomeric poly(dimethylsiloxane) (PDMS) contact masks or channel stamps with feature sizes ranging from nanometer, micrometer, to centimeter. This chemical conversion method has been comprehensively characterized by a set of techniques, including contact angle measurements, X-ray photoelectron spectroscopy (XPS), scanning photoelectron microscopy (SPEM), scanning electron microscopy (SEM), and scanning Kelvin probe microscopy (SKPM). In particular, XPS and SPEM can be used to distinguish regions of different surface functionalities and elucidate the mechanism of plasma-induced chemical conversion. In the case of an octadecyltrichlorosilane (OTS) monolayer, we show that exposure to low-power air plasma causes hydroxylation and oxidation of the methyl terminal group on an OTS-covered Si surface and generates polar functional groups such as hydroxyl, aldehylde, and carboxyl groups, which can allow subsequent grafting of dissimilar SAMS and adsorption of colloid nanoparticles onto the patterned areas with an achievable resolution down to the 50 nm range.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据