4.8 Article

Direct Detection of the Oxygen Rebound Intermediates, Ferryl Mb and NO2, in the Reaction of metMyoglobin with Peroxynitrite

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 131, 期 36, 页码 12979-12988

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja902473r

关键词

-

资金

  1. National Institutes of Health [2837 GM036298]

向作者/读者索取更多资源

Oxygenated hemoproteins are known to react rapidly with nitric oxide (NO) to produce peroxynitrite (PN) at the heme site. This process could lead either to attenuation of the effects of NO or to nitrosative protein damage. Peroxynitrite is a powerful nitrating and oxidizing agent that has been implicated in a variety of cell injuries. Accordingly, it is important to delineate the nature and variety of reaction mechanisms of PN reactions with heme proteins. Here, we present direct evidence that ferrylMb and NO2 are both produced during the reaction of PN and metmyolgobin (metMb). Kinetic evidence indicates that these products evolve from initial formation of a caged radical intermediate [Fe-IV=O center dot NO2]. This caged pair reacts mainly via internal return with a rate constant k(r) to form metMb and nitrate in an oxygen rebound scenario. Detectable amounts of ferrylMb are observed by stopped-flow spectrophotometry, appearing at a rate consistent with the rate, k(obs), of heme-mediated PN decomposition. Freely diffusing NO2, which is liberated concomitantly from the radical pair (k(e)), preferentially nitrates Tyr103 in horse heart myoglobin. The ratio of the rates of in-cage rebound and cage escape, k(r)/k(e), was found to be similar to 10 by examining the nitration yields of fluorescein, an external NO2 trap. This rebound/escape model for the metMb/PN interaction is analogous to the behavior of alkyl hyponitrites and the well-studied geminate recombination processes of deoxymyoglobin with O-2, CO, and NO. The scenario is also similar to the stepwise events of substrate hydroxylation by cytochrome P450 and other oxygenases. It is likely, therefore, that the reaction of metMb with ONOO- and that of oxyMb with NO proceed through the same [Fe-IV=O center dot NO2] caged radical intermediate and lead to similar outcomes. The results indicate that while oxyMb may reduce the concentration of intracellular NO, it would not eliminate the formation of NO2 as a decomposition product of peroxynitrite.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据