4.8 Article

Role of the active-site solvent in the thermodynamics of factor Xa ligand binding

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 130, 期 9, 页码 2817-2831

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja0771033

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM052018-12, R01 GM043340-19, R01 GM052018, GM-43340, R01 GM043340, GM-52018] Funding Source: Medline

向作者/读者索取更多资源

Understanding the underlying physics of the binding of, small-molecule ligands to protein active sites is a key objective of computational chemistry and biology. It is widely believed that displacement of water molecules from the active site by the ligand is a principal (if not the dominant) source of binding free energy. Although continuum theories of hydration are routinely used to describe the contributions of the solvent to the binding affinity of the complex, it is still an unsettled question as to whether or not these continuum solvation theories describe the underlying molecular physics with sufficient accuracy to reliably rank the binding affinities of a set of ligands for a given protein. Here we develop a novel, computationally efficient descriptor of the contribution of the solvent to the binding free energy of a small molecule and its associated receptor that captures the effects of the ligand displacing the solvent from the protein active site with atomic detail. This descriptor quantitatively predicts (R-2 = 0.81) the binding free energy differences between congeneric ligand pairs for the test system factor Xa, elucidates physical properties of the active-site solvent that appear to be missing in most continuum theories of hydration, and identifies several features of the hydration of the factor Xa active site relevant to the structure-activity relationship of its inhibitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据