4.8 Article

Identification of a gene cluster that directs putrebactin biosynthesis in Shewanella species:: PubC catalyzes cyclodimerization of N-hydroxy-N-succinyiputrescine

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 130, 期 32, 页码 10458-+

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja8027263

关键词

-

资金

  1. Biotechnology and Biological Sciences Research Council [BBS/B/14450] Funding Source: researchfish
  2. Biotechnology and Biological Sciences Research Council [BBS/B/14450] Funding Source: Medline

向作者/读者索取更多资源

Putrebactin is a dihydroxamate iron chelator produced by the metabolically versatile marine bacterium Shewanella putrefaciens. It is a macrocyclic dimer of N-hydroxy-N-succinyl-putrescine (HSP) and is structurally related to desferrioxamine E, which is a macrocyclic trimer of N-hydroxy-N-succinyl-cadaverine (HSC), We recently showed that DesD, a member of the NIS synthetase superfamily, catalyzes the key step in desferrioxamine E biosynthesis: ATP-dependent trimerisation and macrocylization of HSC. Here we report identification of a conserved gene cluster in the sequenced genomes of several Shewanella species, including Shewanella putrefaciens, which is hypothesized to direct putrebactin biosynthesis from putrescine, succinyl-CoA and molecular oxygen, The pubC gene within this gene cluster encodes a protein with similar to 65% similarity to DesD. We overexpressed pubC from Shewanella species MR-4 and MR-7 in E. coli. The resulting His(6)-PubC fusion proteins were purified by Ni-NTA affinity and gel filtration chromatography. The recombinant proteins were shown to catalyze ATP-dependent cyclodimerization of HSP to form putrebactin. The uncyclized dimer of HSP pre-putrebactin was shown to be an intermediate in the conversion of two molecules of HSP to putrebactin. The data indicate that pre-putrebactin is converted to putrebactin via PubC-catalyzed activation of the carboxyl group by adenylation, followed by PubC-catalyzed nucleophilic attack of the amino group on the carbonyl carbon of the acyl adenylate. This mechanism for macrocycle formation is very different from the mechanism involved in the biosynthesis of many other macrocyclic natural products, where already-activated acyl thioesters are converted by thioesterase domains of polyketide synthases and nonribosomal peptide synthetases to macrocycles via covalent enzyme bound intermediates. The results of this study demonstrate that two closely related enzymes, PubC and DesD, catalyze specific cyclodimerization and cyclotrimerization reactions, respectively, of structurally similar substrates, raising intriguing questions regarding the molecular mechanism of specificity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据