4.8 Article

Peptide Synthesis in Aqueous Environments: The Role of Extreme Conditions on Amino Acid Activation

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 130, 期 43, 页码 14148-14160

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja802370c

关键词

-

资金

  1. DFG [1547/7]

向作者/读者索取更多资源

The free energy surfaces and reaction mechanisms underlying the activation of amino acids by COS in bulk water at ambient conditions as well as extreme temperature-pressure thermodynamic conditions were studied using accelerated ab initio molecular dynamics. The results for the reaction sequence leading from glycine to its activated form, a so-called Leuchs anhydride or alpha-amino acid N-carboxyanhydride (NCA), suggest that extreme conditions not far from the critical point of water may favor the formation of this activated species. This is traced back to appropriately affecting relative stabilities of neutral versus charged or zwitterionic molecular species which shifts equilibria, affects relative barriers, and thus modifies reaction rates. Furthermore, it is shown that the N-carboxyanhydride of glycine is not formed from N-thiocarboxyl glycine by its direct cyclization, but instead an indirect mechanism, the so-called isocyanate route, is clearly preferred at both conditions. The work quantitatively underpins the impact of extreme solvent conditions on the investigated organic reactions in aqueous media which implies that the presented results are of relevance to fields such as prebiotic chemistry and green chemistry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据