4.8 Article

Role of water in mediating the assembly of Alzheimer amyloid-β aβ16-22 protofilaments

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 130, 期 33, 页码 11066-11072

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja8017303

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM043340, R01 GM043340-19, GM43340] Funding Source: Medline

向作者/读者索取更多资源

The role of water in promoting the formation of protofilaments (the basic building blocks of amyloid fibrils) is investigated using fully atomic molecular dynamics simulations. Our model protofilament consists of two parallel beta-sheets of Alzheimer Amyloid-beta 16-22 peptides (Ac-K-16-L-17-V-18-F-19-F-20-A(21)-E-22-NH2)Each sheet presents a distinct hydrophobic and hydrophilic face and together self-assemble to a stable protofilament with a core consisting of purely hydrophobic residues (L-17, F-19, A(21)), with the two charged residues (K-16, E-22) pointing to the solvent. Our simulations reveal a subtle interplay between a water mediated assembly and one driven by favorable energetic interactions between specific residues forming the interior of the protofilament. A dewetting transition, in which water expulsion precedes hydrophobic collapse, is observed for some, but not all molecular dynamics trajectories. In the trajectories in which no dewetting is observed, water expulsion and hydrophobic collapse occur simultaneously, with protofilament assembly driven by direct interactions between the hydrophobic side chains of the peptides (particularly between F-F residues). For those same trajectories, a small increase in the temperature of the simulation (on the order of 20 K) or a modest reduction in the peptide-water van der Waals attraction (on the order of 10%) is sufficient to induce a dewetting transition, suggesting that the existence of a dewetting transition in simulation might be sensitive to the details of the force field parametrization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据