4.8 Article

Generation of Oxide Nanopatterns by Combining Self-Assembly of S-Layer Proteins and Area-Selective Atomic Layer Deposition

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 130, 期 50, 页码 16908-16913

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja803186e

关键词

-

资金

  1. Nanoetectronics Research Facility at UCLA

向作者/读者索取更多资源

We report an effective method to fabricate two-dimensional (2D) periodic oxide nanopatterns using S-layer proteins as a template. Specifically, S-layer proteins with a unit cell dimension of 20 nm were reassembled on silicon substrate to form 2D arrays with ordered pores of nearly identical sizes (9 nm). Octadecyltrichlorosilane (ODTS) was utilized to selectively react with the S-layer proteins, but not the Si surface exposed through the pores defined by the proteins. Because of the different surface functional groups on the ODTS-modified S-layer proteins and Si surface, area-selective atomic layer deposition of metal oxide-based high-k materials, such as hafnium oxide, in the pores was achieved. The periodic metal oxide nanopatterns were generated on Si substrate after selective removal of the ODTS-modified S-layer proteins. These nanopatterns of high-k materials are expected to facilitate further downscaling of logic and memory nanoelectronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据