4.8 Article

DNA-templated polymerization of side-chain-functionalized peptide nucleic acid aldehydes

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 130, 期 14, 页码 4646-4659

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja0753997

关键词

-

资金

  1. Howard Hughes Medical Institute Funding Source: Medline
  2. NIGMS NIH HHS [R01GM065865, R01 GM065865-03, R01 GM065865-04, R01 GM065865-02, R01 GM065865-01A2, R01 GM065865, R01 GM065865-05A1] Funding Source: Medline

向作者/读者索取更多资源

The DNA-templated polymerization of synthetic building blocks provides a potential route to the laboratory evolution of sequence-defined polymers with structures and properties not necessarily limited to those of natural biopolymers. We previously reported the efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid (PNA) aldehydes. Here, we report the enzyme-free, DNA-templated polymerization of side-chain-functionalized PNA tetramer and pentamer aldehydes. We observed that polymerization of tetramer and pentamer PNA building blocks with a single lysine-based side chain at various positions in the building block could proceed efficiently and sequence specifically. In addition, DNA-templated polymerization also proceeded efficiently and in a sequence-specific manner with pentamer PNA aldehydes containing two or three lysine side chains in a single building block to generate more densely functionalized polymers. To further our understanding of side-chain compatibility and expand the capabilities of this system, we also examined the polymerization efficiencies of 20 pentamer building blocks each containing one of five different side-chain groups and four different side-chain regio- and stereochemistries. Polymerization reactions were efficient for all five different side-chain groups and for three of the four combinations of side-chain regio- and stereochemistries. Differences in the efficiency and initial rate of polymerization correlate with the apparent melting temperature of each building block, which is dependent on side-chain regio- and stereochemistry but relatively insensitive to side-chain structure among the substrates tested. Our findings represent a significant step toward the evolution of sequence-defined synthetic polymers and also demonstrate that enzyme-free nucleic acid-templated polymerization can occur efficiently using substrates with a wide range of side-chain structures, functionalization positions within each building block, and functionalization densities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据