4.8 Article

Most efficient cocaine hydrolase designed by virtual screening of transition states

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 130, 期 36, 页码 12148-12155

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja803646t

关键词

-

资金

  1. NIH [DA013930, DA021416]
  2. National Research Foundation of Korea [과06B2506] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Cocaine is recognized as the most reinforcing of all drugs of abuse. There is no anticocaine medication available. The disastrous medical and social consequences of cocaine addiction have made the development of an anticocaine medication a high priority. It has been recognized that an ideal anticocaine medication is one that accelerates cocaine metabolism producing biologically inactive metabolites via a route similar to the primary cocaine-metabolizing pathway, i.e., cocaine hydrolysis catalyzed by plasma enzyme butyrylcholinesterase (BChE). However, wild-type BChE has a low catalytic efficiency against the abused cocaine. Design of a high-activity enzyme mutant is extremely challenging, particularly when the chemical reaction process is rate-determining for the enzymatic reaction. Here we report the design and discovery of a high-activity mutant of human BChE by using a novel, systematic computational design approach based on transition-state simulations and activation energy calculations. The novel computational design approach has led to discovery of the most efficient cocaine hydrolase, i.e., a human BChE mutant with an similar to 2000-fold improved catalytic efficiency, promising for therapeutic treatment of cocaine overdose and addiction as an exogenous enzyme in human. The encouraging discovery resulted from the computational design not only provides a promising anticocaine medication but also demonstrates that the novel, generally applicable computational design approach is promising for rational enzyme redesign and drug discovery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据