4.8 Review

Toward a Chemical Mechanism of Proton Pumping by the B-Type Cytochrome c Oxidases: Application of Density Functional Theory to Cytochrome ba3 of Thermus thermophilus

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 130, 期 45, 页码 15002-15021

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja803112w

关键词

-

资金

  1. USPHS [GM35342, GM39914, GM43278]

向作者/读者索取更多资源

A mechanism for proton pumping by the B-type cytochrome c oxidises is presented in which one proton is pumped in conjunction with the weakly exergonic, two-electron reduction of Fe-bound O-2 to the Fe-Cu bridging peroxodianion and three protons are pumped in conjunction with the highly exergonic, two-electron reduction of Fe(III)-O--O--Cu(II) to form water and the active oxidized enzyme, Fe(III)--OH,Cu(II). The scheme is based on the active-site structure of cytochrome ba(3) from Thermus thermophilus, which is considered to be both necessary and sufficient for coupled O-2 reduction and proton pumping when appropriate gates are in place (not included in the model). Fourteen detailed structures obtained from density functional theory (DFT) geometry optimization are presented that are reasonably thought to occur during the four-electron reduction of O-2. Each proton-pumping step takes place when a proton resides on the imidazole ring of I-His376 and the large active-site cluster has a net charge of +1 due to an uncompensated, positive charge formally associated with CUB. Four types of DFT were applied to determine the energy of each intermediate, and standard thermochemical approaches were used to obtain the reaction free energies for each step in the catalytic cycle. This application of DFT generally conforms with previously suggested criteria for a valid model (Siegbahn, P. E. M.; Blomberg, M. A. R. Chem. Rev. 2000, 100, 421-437) and shows how the chemistry of O-2 reduction in the heme a(3)-CUB dinuclear center can be harnessed to generate an electrochemical proton gradient across the lipid bilayer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据