4.8 Article

Detection of mismatched DNA on partially negatively charged diamond surfaces by optical and potentiometric methods

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 130, 期 40, 页码 13251-13263

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja710167z

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology, [A07102000]
  2. Consolidated Research Institute for Advanced Science and Medical Care, Waseda University (ASMew)

向作者/读者索取更多资源

The effects of surface charge density on DNA hybridization have been investigated on a mixture of hydrogen-, oxygen-, and amine-terminated diamond surfaces. A difference in the hybridization efficiencies of complementary and mismatched DNA was clearly observed by fluorescence and potentiometric observations at a particular coverage of oxygen. In the fluorescence observation, singly mismatched DNA was detected with high contrast after appropriate hybridization on the surface with 10-20% oxygen coverage. The amount of oxygen in the form of C-O- (deprotonated C-OH) producing the surface negative-charge density was estimated by X-ray photoelectron spectroscopy. Electrolyte solution gate field-effect transistors (SGFETs) were used for potentiometric observations. The signal difference (change in gate potential) on the SGFET, which was as large as similar to 20 mV, was caused by the difference in the hybridization efficiencies of complementary target DNA (cDNA) and singly mismatched (1 MM) target DNA with a common probe DNA immobilized on the same SGFET. The reversible change in gate potential caused by the hybridization and denaturation cycles and discriminating between the complementary and 1 MM DNA targets was very stable throughout the cyclical detections. Moreover, the ratio of signals caused by hybridization of the cDNA and 1 MM DNA targets with the probe DNA immobilized on the SGFET was determined to be 3:1 when hybridization had occurred (after 15 min on SGFET), as determined by real-time measurements. From the viewpoint of hybridization kinetics, the rate constant for hybridization of singly mismatched DNA was a factor of similar to 3 smaller than that of cDNA on this functionalized (oxidized and arninated) diamond surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据