4.8 Review

Stereochemical nonrigidity of a chiral rhodium boryl hydride complex:: A σ-borane complex as transition state for isomerization

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 130, 期 13, 页码 4375-4385

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja077357o

关键词

-

向作者/读者索取更多资源

Experimental and computational studies are reported on half-sandwich rhodium complexes that undergo B-H bond activation with pinacolborane (HBpin = HB(OCMe2CMe2O)). The photochemical reaction of [Rh(eta(5)-C5H5)(RR-phospholane)(C2H4)] 3 (phospholane = PhP(CHMeCH2CH2CHMe)) with HBpin generates the boryl hydride in two distinguishable isomers [(S-Rh)-Rh(eta(5)-C5H5)(Bpin)(H)(R,R-phospholane)] 5a and [(R-Rh)-Rh(eta(5)-C5H5)(Bpin)(H)(RR-phospholane)] 5b that undergo intramolecular exchange. The presence of a chiral phosphine allowed the determination of the interconversion rates (epimerization) by 1D H-1 EXSY spectroscopy in C6D6 solution yielding Delta H-double dagger = 83.4 +/- 1.8 W mol(-1) for conversion of 5a to 5b and 79.1 +/- 1.4 kJ mol-1 for 5b to 5a. Computational analysis yielded gas-phase energy barriers of 96.4 kJ mol(-1) determined at the density functional theory (DFT, B3PW91) level for a model with PMe3 and B(OCH2-CH2O) ligands; higher level calculations (MPW2PLYP) on an optimized QM/MM(ONIOM) geometry for the full system place the transition state 76.8 kJ mol(-1) above the average energy of the two isomers. The calculations indicate that the exchange proceeds via a transition state with a a-B-H-bonded borane. The B-H bond lies in a mirror plane containing rhodium and phosphorus. No intermediate with an)72-B-H ligand is detected either by experiment or calculation. Complex 3 has also been converted to the [Rh(eta(2)-B-H) C5H5)Br-2(R,R-phospholane)] (characterized crystallographically) and [Rh(eta(5)-C5H5)(H)2(RR-phospholane)]. The latter exhibits two inequivalent hydride resonances that undergo exchange with Delta H-double dagger = 101 2 kJ mol(-1). DFT calculations indicate that the boryl hydride complex has a lower exchange barrier than the dihydride complex because of steric hindrance between the phospholane and Bpin ligands in the boryl hydride.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据