4.8 Article

Synthesis of cadmium telluride quantum wires and the similarity of their effective band gaps to those of equidiameter cadmium telluride quantum dots

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 130, 期 25, 页码 7997-8005

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja800837v

关键词

-

向作者/读者索取更多资源

High-quality colloidal CdTe quantum wires having purposefully controlled diameters in the range 5-11 nm are grown by the solution-liquid-solid (SLS) method, using Bi nanoparticle catalysts, cadmium octadecylphosphonate and trioctylphosphine telluride as precursors, and a TOPO solvent. The wires adopt the wurtzite structure and grow along the [002] direction (parallel to the c axis). The size dependence of the effective band gaps in the wires is determined from the absorption spectra and compared to the experimental results for high-quality CdTe quantum dots. In contrast to the predictions of an effectivemass approximation, particle-in-a-box model, and previous experimental results from CdSe and InP dot-wire comparisons, the effective band gaps of CdTe dots and wires of like diameter are found to be experimentally indistinguishable. The present results are analyzed using density functional theory under the local-density approximation by implementing a charge-patching method. The higher-level theoretical analysis finds the general existence of a threshold diameter, above which dot and wire effective band gaps converge. The origin and magnitude of this threshold diameter are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据