4.8 Article

Reversible structural transition in MIL-53 with large temperature hysteresis

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 130, 期 35, 页码 11813-11818

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja803669w

关键词

-

资金

  1. U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy

向作者/读者索取更多资源

The metal-organic framework, MIL-53, can have a structural transition from an open-pored to a closed-pored structure by adsorbing different guest molecules. The aid of guest molecules is believed to be necessary to initiate this breathing effect. Using both neutron powder diffraction and inelastic neutron scattering techniques, we find that MIL-53 exhibits a reversible structural transition between an open-pored and a closed-pored structure as a function of temperature without the presence of any guest molecules. Surprisingly, this structural transition shows a significant temperature hysteresis: the transition from the open-pored to closed-pored structure occurs at approximately 125 to 150 K, while the transition from the closed-pored to open-pored structure occurs around 325 to 375 K. To our knowledge, this is first observation of such a large temperature hysteresis of a structural transition in metal-organic frameworks. We also note that the transition from the open to closed structure at low temperature shows very slow kinetics. An ab initio computer simulation is employed to investigate the possible mechanism of the transition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据