4.8 Article

Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 130, 期 14, 页码 4815-4827

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja078243f

关键词

-

向作者/读者索取更多资源

We report on the development of a self-assembled donor for long-range fluorescence resonance energy transfer (FRET). To this end, a three-chromophore FRET (3Ch-FRET) system was constructed, which consists of a luminescent quantum dot (QD), enhanced yellow fluorescent proteins (EYFP), and Atto647-dye-modified oligonucleotides. The system was assembled by electrostatic binding of covalent EYFP-ssDNA conjugate to the QD and subsequent hybridization with complementary oligonucleotides labeled with Atto647-dye. The final conjugates comprise three different two-chromophore FRET (2Ch-FRET) subsystems, QD/EYFP, OD/Atto647, and EYFP/Atto647, respectively, which were studied in detail by steady-state and time-resolved photoluminescence measurements. The helicity of DNA allowed us to control donor/acceptor separations and thus enabled the detailed analysis of the various FRET processes. We found that the 2Ch-FRET and the 3Ch-FRET (QD/EYFP/Atto647) systems revealed FRET efficiencies and transfer rates that were affected by the availability of distinct FRET pathways. The derived energy-transfer efficiencies and Forster radii indicated that within the 3Ch-FRET system, the 2Ch-FRET subsystem QD/EYFP showed highest FRET efficiencies ranging from 64 to 72%. Thus, it can be used as a powerful donor system that combines the intrinsic advantages of QDs (large and spectrally broad absorption cross section) and EYFP (high quantum yield) and enables long-distance FRET processes for donor-acceptor distances of up to 13 nm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据