4.7 Article

Vanadium in Borosilicate Glass

期刊

JOURNAL OF THE AMERICAN CERAMIC SOCIETY
卷 98, 期 1, 页码 88-96

出版社

WILEY
DOI: 10.1111/jace.13303

关键词

-

向作者/读者索取更多资源

Understanding the role of V2O5 within borosilicate glass matrices is important for the development of novel matrices toward immobilization of sulfate containing high-level nuclear wastes. Present investigation shows, within sodium barium borosilicate glass matrix V2O5 can be homogeneously added up to 5mol% and beyond which it separates out into three phases, for example, (i) silica (ii) Barium (Ba) - Vanadium (V) oxide, and (iii) glass matrix. Si-29 MAS NMR (Nuclear Magnetic Resonance) studies of the samples show that below 5mol% V2O5 addition, silicate network is dominantly constituted of Q(2) and Q(3) structural units, whereas above this, the network gets more polymerized through formation of Q(3) and Q(4) units. In case of borate network, B-11 MAS NMR investigations revealed that the concentration of BO4 [(0B, 4Si)] unit increases gradually up to 5mol% and then it decreases at the cost of BO4 [(1B, 3Si)], BO3 (symmetric) and BO3 (asymmetric) units. Micro-Raman analyses of the samples showed that with additions of V2O5 in diluted concentrations, amorphous silicate network remained unaltered, whereas some amplification in signals corresponding to ring-type metaborate and VO5 units exists. It is therefore apparent from both MAS-NMR and micro-Raman studies that with V2O5 additions within the solubility limit (5mol%), borate network gets depolymerized leading to decrease in hardness from an average value of 5.0-4.2GPa.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据