4.7 Article

Electrochemical Properties and Intermediate-Temperature Fuel Cell Performance of Dense Yttrium-Doped Barium Zirconate with Calcium Addition

期刊

JOURNAL OF THE AMERICAN CERAMIC SOCIETY
卷 95, 期 2, 页码 627-635

出版社

WILEY
DOI: 10.1111/j.1551-2916.2011.04795.x

关键词

-

资金

  1. World Premier International (WPI) Research Center Initiative of MEXT, Japan
  2. National Institute for Materials Science (NIMS)

向作者/读者索取更多资源

Although BaZr0.8Y0.2O3-delta (BZY) possesses large bulk proton conductivity and excellent chemical stability, its poor sinterability and grain boundaries block proton conduction. In this work, the effect of Ca as a co-dopant and as a sintering aid (as CaO), on the sinterability, proton conductivity, and fuel cell performance of BZY was investigated. The addition of 4 mol% CaO significantly improved the BZY sinterability: BZY pellets with densities of 92.7% and 97.5% with respect to the theoretical density were obtained after sintering at 1500 degrees C and 1600 degrees C, respectively. The improved BZY sinterability by CaO addition resulted also in a large proton conductivity; at 600 degrees C, the total conductivity of BZY-CaO was 2.14 x 10(-3) S/cm, in wet Ar. Anode-supported fuel cells with 25 mu m-thick BZY-CaO electrolyte membranes were fabricated by a dual-layer co-firing technique. The peak power density of the fuel cell with a BZY-Ni/BZY-4CaO/BZY-LSCF (La0.6Sr0.4Fe0.8 Co0.2O3-delta) configuration was 141 mW/cm(2) at 700 degrees C, several times larger than the reported values of BZY electrolyte membrane fuel cells sintered with the addition of CuO or ZnO, demonstrating promising features for practical fuel cell applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据