4.7 Article

Atomic Scale Modeling of Point Defects in Zirconium Diboride

期刊

JOURNAL OF THE AMERICAN CERAMIC SOCIETY
卷 94, 期 7, 页码 2225-2229

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1551-2916.2010.04360.x

关键词

-

向作者/读者索取更多资源

Simulations using density functional theory were carried out to investigate the defect properties of zirconium diboride (ZrB(2)) and also the solution and diffusion of He and Li. Schottky and Frenkel intrinsic defect processes were all high energy as were mechanisms giving rise to nonstoichiometry; this has implications for high-temperature performance. Li and He species, formed by the transmutation of a (10)B, should therefore mostly be accommodated at the resulting vacant B sites or interstitial sites. Because Li is considerably more stable at the vacant B sites, He will be accommodated interstitially. Furthermore, He was found to diffuse as an interstitial species through the lattice with a low activation energy. This would be consistent with He being lost from the ZrB(2) but with Li being retained to a much greater extent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据