4.7 Article

A Coupled Nanoindentation/SEM-EDS Study on Low Water/Cement Ratio Portland Cement Paste: Evidence for C-S-H/Ca(OH)2 Nanocomposites

期刊

JOURNAL OF THE AMERICAN CERAMIC SOCIETY
卷 93, 期 5, 页码 1484-1493

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1551-2916.2009.03599.x

关键词

-

向作者/读者索取更多资源

A low water/cement ratio (w/c=0.20) hydrated Portland cement paste was analyzed by grid-indentation coupled with ex situ scanning electron microscope-energy-dispersive X-ray spectra (SEM-EDS) analysis at each indentation point. Because finite element and Monte-Carlo simulations showed that the microvolumes probed by each method are of comparable size (approximately 2 mu m), the mechanical information provided by nanoindentation was directly comparable to the chemical information provided by SEM-EDS. This coupled approach provided the opportunity to determine whether the local indentation response was a result of a single- or a multiphase response-the latter being shown predominant in the highly concentrated w/c=0.20 hydrated cement paste. Results indicate that, in the selected microvolumes where C-S-H and nanoscale Ca(OH)(2) (CH) are present, increasing fractions of CH increase the local indentation modulus (and hardness), yielding values above those reported for high-density (HD) C-S-H. Micromechanical analyses show that C-S-H and CH are associated, not merely as a simple biphase mixture, but as an intimate nanocomposite where nanoscale CH reinforces C-S-H by partially filling the latter's gel pores. The paper discusses the mechanism of forming the C-S-H/CH nanocomposite, as well as the impact of nanocomposites on various macroscopic properties of concrete (e.g., shrinkage, expansion). On a general level, this study illustrates how a coupled nanoindentation/X-ray microanalysis/micromechanics approach can provide otherwise inaccessible information on the nanomechanical properties of highly heterogeneous composites with intermixing at length scales smaller than the stress field in a nanoindentation experiment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据