4.6 Article

Improving the sensitivity of a near-infrared nanocomposite photodetector by enhancing trap induced hole injection

期刊

APPLIED PHYSICS LETTERS
卷 106, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4905930

关键词

-

资金

  1. Office of Naval Research (ONR) [N000141210556]
  2. U.S. Defense Threat Reduction Agency (DTRA) [HDTRA1-10-1-0098]

向作者/读者索取更多资源

We report the enhancement of the photoconductive gain of nanocomposite near-infrared photodetectors by a zinc oxide nanoparticles (ZnO NPs) rich surface at the nanocomposite/cathode interface. An argon plasma etching process was used to remove polymer at the surface of nanocomposite films, which resulted in a ZnO NPs rich surface. The other way is to spin-coat a thin layer of ZnO NPs onto the nanocomposite layer. The ZnO NPs rich surface, which acts as electron traps to induce secondary hole injection under reverse bias, increased hole injection, and thus the external quantum efficiency by 2-3 times. The darkcurrent declined one order of magnitude simultaneously as a result of etching the top nanocomposite layer. The specific detectivity at 800 nm was increased by 7.4 times to 1.11 x 10(10) Jones due to the simultaneously suppressed noise and enhanced gain. (C) 2015 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据