4.6 Article

Splitting of neutral mechanical plane of conformal, multilayer piezoelectric mechanical energy harvester

期刊

APPLIED PHYSICS LETTERS
卷 107, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4927677

关键词

-

资金

  1. National Natural Science Foundation of China [11302038]
  2. China Postdoctoral Science Foundation [2014T70243]

向作者/读者索取更多资源

Flexible piezoelectric mechanical energy harvesters (MEHs) are of recent interest as an important emerging variant of traditional piezoelectric devices. The design of stacking multilayer MEHs with adhesive in between is an effective way to enhance the magnitude of power generation. Here, we present an analytic model to study the mechanical behavior of the multilayer MEHs based on lead zirconate titanate (PZT) subjected to Euler buckling. Being different from the hypothesis of the plane section for the entire stack, it is found that each polyimide (PI) layer holds plane section of its own, while soft adhesives serve as shear lags. Accordingly, the neutral mechanical plane is split into multiple ones. The deformation is almost the same for each PI layer, as well as PZT arrays, which is very beneficial to avoid the premature failure of devices. The extreme cases and the transition of these cases are all captured quantitatively with a unified analytic model which is verified by the finite element method. A dimensionless parameter is obtained to characterize the degree of the splitting of neutral mechanical plane, which is significant for the design of the multilayer PZT MEHs. (C) 2015 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据