4.5 Article

Data-driven matched field processing for Lamb wave structural health monitoring

期刊

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
卷 135, 期 3, 页码 1231-1244

出版社

ACOUSTICAL SOC AMER AMER INST PHYSICS
DOI: 10.1121/1.4863651

关键词

-

资金

  1. National Defense Science and Engineering Graduate Fellowship
  2. National Science Foundation Graduate Research Fellowship [0946825]

向作者/读者索取更多资源

Matched field processing is a model-based framework for localizing targets in complex propagation environments. In underwater acoustics, it has been extensively studied for improving localization performance in multimodal and multipath media. For guided wave structural health monitoring problems, matched field processing has not been widely applied but is an attractive option for damage localization due to equally complex propagation environments. Although effective, matched field processing is often challenging to implement because it requires accurate models of the propagation environment, and the optimization methods used to generate these models are often unreliable and computationally expensive. To address these obstacles, this paper introduces data-driven matched field processing, a framework to build models of multimodal propagation environments directly from measured data, and then use these models for localization. This paper presents the data-driven framework, analyzes its behavior under unmodeled multipath interference, and demonstrates its localization performance by distinguishing two nearby scatterers from experimental measurements of an aluminum plate. Compared with delay-based models that are commonly used in structural health monitoring, the data-driven matched field processing framework is shown to successfully localize two nearby scatterers with significantly smaller localization errors and finer resolutions. (C) 2014 Acoustical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据