4.5 Article

Analysis of shear-wave attenuation in unconsolidated sands and glass beads

期刊

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
卷 136, 期 5, 页码 2478-2488

出版社

ACOUSTICAL SOC AMER AMER INST PHYSICS
DOI: 10.1121/1.4896468

关键词

-

资金

  1. Office of Naval Research [N00014-10-1-0092, N00014-14-1-0247]

向作者/读者索取更多资源

Chotiros and Isakson [J. Acoust. Soc. Am. 135, 3264-3279 (2014)] contend that the physics-based grain-shearing (GS) theories of wave propagation in granular materials are not consistent with one particular shear-attenuation data set for water-saturated angular sand that has appeared in the literature. This provides them with the rationale for developing their own model, an extension of the empirical Biot-Stoll model, which they designate the Extended Biot (EB) model. In this article, the EB model and the grain-shearing theories are briefly reviewed, and it is demonstrated that, in fact, the original GS theory accurately matches the frequency-dependent trends of all the shear attenuation data sets that are currently available, including those for saturated angular sands after random fluctuations are suppressed by averaging over several realizations of the medium. It is also pointed out that Chotiros and Isakson's treatment of the available shear-attenuation data is highly selective, and that the format in which they present the selected data makes their comparisons with theoretical models difficult to interpret. Thus, their attempts at validating the EB model and their conclusions concerning alternative theories should be treated with caution. (C) 2014 Acoustical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据