4.5 Article

Rayleigh wave propagation method for the characterization of a thin layer of biomaterials

期刊

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
卷 133, 期 6, 页码 4332-4342

出版社

ACOUSTICAL SOC AMER AMER INST PHYSICS
DOI: 10.1121/1.4804318

关键词

-

资金

  1. National Institute on Deafness and Other Communication Disorders [DC005788, DC008290]

向作者/读者索取更多资源

An experimental method based on Rayleigh wave propagation was developed for quantifying the frequency-dependent viscoelastic properties of a small volume of expensive biomaterials over a broad frequency range. Synthetic silicone rubber and gelatin materials were fabricated and tested to evaluate the proposed method. Planar harmonic Rayleigh waves at different frequencies, from 80 to 4000 Hz, were launched on the surface of a sample composed of a substrate with known material properties coated with a thin layer of the soft material to be characterized. A transfer function method was used to obtain the complex Rayleigh wavenumber. An inverse wave propagation problem was solved and a complex nonlinear dispersion equation was obtained. The complex shear and elastic moduli of the sample materials were then calculated through the numerical solution of the obtained dispersion equation using the measured wavenumbers. The results were in good agreement with those of a previous independent study. The proposed method was found to be reliable and cost effective for the measurement of viscoelastic properties of a thin layer of expensive biomaterials, such as phonosurgical biomaterials, over a wide frequency range. (C) 2013 Acoustical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据