4.5 Article

Assessing the pitch structure associated with multiple rates and places for cochlear implant users

期刊

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
卷 123, 期 2, 页码 1043-1053

出版社

ACOUSTICAL SOC AMER AMER INST PHYSICS
DOI: 10.1121/1.2821980

关键词

-

资金

  1. NIDCD NIH HHS [1-R01-DC007994-01] Funding Source: Medline

向作者/读者索取更多资源

Cochlear implant subjects continue to experience difficulty understanding speech in noise and performing pitch-based musical tasks. Acoustic model studies have suggested that transmitting additional fine structure via multiple stimulation rates is a potential mechanism for addressing these issues [Nie et al., IEEE Trans. Biomed. Eng. 52, 64-73 (2005); Throckmorton et al., Hear. Res. 218, 30-42 (2006)]; however, results from preliminary cochlear implant studies have been less compelling. Multirate speech processing algorithms previously assumed a place-dependent pitch structure in that a basal electrode would always elicit a higher pitch percept than an apical electrode, independent of stimulation rate. Some subjective evidence contradicts this assumption [H. J. McDermott and C. M. McKay, J. Acoust. Soc. Am. 101, 1622-1630 (1997); R. V. Shannon, Hear. Res. 11 157-189 (1983)]. The purpose of this study is to test the hypothesis that the introduction of multiple rates may invalidate the tonotopic pitch structure resulting from place-pitch alone. The SPEAR3 developmental speech processor was used to collect psychophysical data from five cochlear implant users to assess the tonotopic structure for stimuli presented at two rates on all active electrodes. Pitch ranking data indicated many cases where pitch percepts overlapped across electrodes and rates. Thus, the results from this study suggest that pitch-based tuning across rate and electrode may be necessary to optimize performance of a multirate sound processing strategy in cochlear implant subjects. (c) 2008.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据