4.4 Article

Testing of a Bridge Weigh-in-Motion Algorithm Utilising Multiple Longitudinal Sensor Locations

期刊

JOURNAL OF TESTING AND EVALUATION
卷 40, 期 6, 页码 961-974

出版社

AMER SOC TESTING MATERIALS
DOI: 10.1520/JTE104576

关键词

bridge weigh-in-motion; weigh-in-motion; WIM; inverse algorithm; optimization; bridge experiment

向作者/读者索取更多资源

A new bridge weigh-in-motion (WIM) algorithm is developed which makes use of strain sensors at multiple longitudinal locations of a bridge to calculate axle weights. The optimisation procedure at the core of the proposed algorithm seeks to minimise the difference between static theory and measurement, a procedure common in the majority of bridge WIM algorithms. In contrast to the single unique value calculated for each axle weight in common Bridge WIM algorithms, the new algorithm provides a time history for each axle based on a set of equations formulated for each sensor at each scan. Studying the determinant of this system of equations, those portions of the time history of calculated axle weights for which the equations are poorly conditioned are removed from the final reckoning of results. The accuracy of the algorithm is related to the ability to remove dynamics and the use of a precise influence line. These issues are addressed through the use of a robust moving average filter and a calibration procedure based on using trucks from ambient traffic. The influence of additional longitudinal sensor locations on the determinant of the system of equations is discussed. Sensitivity analyses are carried out to analyse the effect of a misread axle spacing or velocity on the predictions, and as a result, the algorithm reveals an ability to identify potentially erroneous predictions. The improvement in accuracy of the calculated axle weights with respect to common approaches is shown, first using numerical simulations based on a vehicle-bridge interaction finite-element model, and second using experimental data from a beam-and-slab bridge in Slovenia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据