4.2 Article

Assessment of radiation damage behaviour in a large collection of empirically optimized datasets highlights the importance of unmeasured complicating effects

期刊

JOURNAL OF SYNCHROTRON RADIATION
卷 18, 期 -, 页码 387-397

出版社

WILEY-BLACKWELL
DOI: 10.1107/S0909049511008235

关键词

radiation damage; data collection; strategy; beamline software; datasets

向作者/读者索取更多资源

The radiation damage behaviour in 43 datasets of 34 different proteins collected over a year was examined, in order to gauge the reliability of decay metrics in practical situations, and to assess how these datasets, optimized only empirically for decay, would have benefited from the precise and automatic prediction of decay now possible with the programs RADDOSE [Murray, Garman & Ravelli (2004). J. Appl. Cryst. 37, 513-522] and BEST [Bourenkov & Popov (2010). Acta Cryst. D66, 409-419]. The results indicate that in routine practice the diffraction experiment is not yet characterized well enough to support such precise predictions, as these depend fundamentally on three interrelated variables which cannot yet be determined robustly and practically: the flux density distribution of the beam; the exact crystal volume; the sensitivity of the crystal to dose. The former two are not satisfactorily approximated from typical beamline information such as nominal beam size and transmission, or two-dimensional images of the beam and crystal; the discrepancies are particularly marked when using microfocus beams (< 20 mu m). Empirically monitoring decay with the dataset scaling B factor (Bourenkov & Popov, 2010) appears more robust but is complicated by anisotropic and/or low-resolution diffraction. These observations serve to delineate the challenges, scientific and logistic, that remain to be addressed if tools for managing radiation damage in practical data collection are to be conveniently robust enough to be useful in real time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据