4.5 Article

In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept?

期刊

JOURNAL OF SURGICAL RESEARCH
卷 189, 期 2, 页码 340-347

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jss.2014.02.011

关键词

Bacterial cellulose; Vascular surgery; Vascular tissue engineering; Artificial small-diameter vascular grafts

类别

资金

  1. Koln fortune program
  2. Marga and Walter Boll Foundation
  3. Cologne Fortune Program

向作者/读者索取更多资源

Background: Tissue-engineered blood vessels (TEBVs) represent an innovative approach for overcoming reconstructive problems associated with vascular diseases by providing small-caliber vascular grafts. This study aimed to evaluate a novel biomaterial of bacterially synthesized cellulose (BC) as a potential scaffold for small-diameter TEBV. Methods: Small-diameter blood vessels with a supramolecular fiber network structure consisting of tubular hydrogels from biodesigned cellulose were created using Gluconacetobacter strains and Matrix reservoir technology. BC tubes (length: 100 mm, inner diameter: 4.0-5.0 mm) were applied to replace the carotid arteries of 10 sheep for a period of 3 mo to gain further insights into (a) functional (in vivo) performance, (b) ability of providing a scaffold for the neoformation of a vascular wall and (c) their proinflammatory potential, and the (d) technical feasibility of the procedure. Results: Preoperative analysis revealed a bursting strength of the grafts of approximately 800 mm Hg and suture retention strength of 4-5 N. Postexplantation analysis showed a patency rate of 50% (n = 5) and physiological performance of the patent grafts at 4, 8, and 12 wk postoperatively, compared with native arteries. Histologic analysis revealed a neoformation of a vascular wall-like structure along the BC scaffold consisting of immigrated vascular smooth muscle cells and a homogeneous endothelialization of the inner graft surface without signs of prothrombogenic or inflammatory potential. Scanning electron microscopy revealed a confluent luminal endothelial cell layer and the immigration of vascular smooth muscle cells into the BC matrix. Conclusions: BC grafts provide a scaffold for the neoformation of a three-layered vascular wall exhibit attractive properties for their use in future TEBV programs for cardiovascular surgery. (C) 2014 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据