4.5 Article

Biologic Scaffold Remodeling in a Dog Model of Complex Musculoskeletal Injury

期刊

JOURNAL OF SURGICAL RESEARCH
卷 176, 期 2, 页码 490-502

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jss.2011.11.1029

关键词

skeletal muscle; extracellular matrix; quadriceps; constructive remodeling; muscle injury

类别

资金

  1. Department of Defense [W81XWH-08-2-0032]

向作者/读者索取更多资源

Background. Current treatment principles for muscle injuries with volumetric loss have been largely derived from empirical observations. Differences in severity or anatomic location have determinant effects on the tissue remodeling outcome. Biologic scaffolds composed of extracellular matrix (ECM) have been successfully used to restore vascularized, innervated, and contractile skeletal muscle in animal models but limited anatomic locations have been evaluated. The aim of this study was to determine the ability of a xenogeneic ECM scaffold to restore functional skeletal muscle in a canine model of a complex quadriceps injury involving bone, tendon, and muscle. Materials and Methods. Sixteen dogs were subjected to unilateral resection of the distal third of the vastus lateralis and medial half of the distal third of the vastus medialis muscles including the proximal half of their associated quadriceps tendon. This defect was replaced with a biologic scaffold composed of small intestinal submucosa extracellular matrix (SIS-ECM) and the remodeling response was evaluated at 1, 2, 3, and 6 mo (N = 4 per group). Results. The initial remodeling process followed a similar pattern to other studies of ECM-mediated muscle repair with rapid vascularization and migration of myoblasts into the defect site. However, over time the remodeling response resulted in the formation of dense collagenous tissue with islands of muscle in the segments of the scaffold not in contact with bone, and foci of bone and cartilage in the segments that were adjacent to the underlying bone. Conclusions. SIS-ECM was not successful at restoring functional muscle tissue in this model. However, the results also suggest that SIS-ECM may have potential to promote integration of soft and boney tissues when implanted in close apposition to bone. (c) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据