4.3 Article

Effects of resistivity and rotation on the linear plasma response to non-axisymmetric magnetic perturbations on DIII-D

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0741-3335/57/2/025015

关键词

non-axisymmetric coil; plasma response; magnetic perturbation; toroidal rotation; plasma resistivity

资金

  1. US Department of Energy, Office of Science, Office of Fusion Energy Sciences [DE-FC02-04ER54698]
  2. AINSE Ltd.
  3. EPSRC [EP/I501045/1] Funding Source: UKRI

向作者/读者索取更多资源

Parameter scans show the strong dependence of the plasma response on the poloidal structure of the applied field highlighting the importance of being able to control this parameter using non-axisymmetric coil sets. An extensive examination of the linear single fluid plasma response to n = 3 magnetic perturbations in L-mode DIII-D lower single null plasmas is presented. The effects of plasma resistivity, toroidal rotation and applied field structure are calculated using the linear single fluid MHD code, MARS-F (Liu et al 2000 Phys. Plasmas 7 3681). Measures which separate the response into a pitch-resonant and resonant field amplification (RFA) component are used to demonstrate the extent to which resonant screening and RFA occurs. The ability to control the ratio of pitch-resonant fields to RFA by varying the phasing between upper and lower resonant magnetic perturbations coils sets is shown. The predicted magnetic probe outputs and displacement at the x-point are also calculated for comparison with experiments. Additionally, modelling of the linear plasma response using experimental toroidal rotation profiles and Spitzer like resistivity profiles are compared with results which provide experimental evidence of a direct link between the decay of the resonant screening response and the formation of a 3D boundary (Schmitz et al 2014 Nucl. Fusion 54 012001). Good agreement is found during the initial application of the MP, however, later in the shot a sudden drop in the poloidal magnetic probe output occurs which is not captured in the linear single fluid modelling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据