4.5 Article

Porous Poly(vinyl alcohol)-Alginate Gel Hybrid Construct for Neocartilage Formation Using Human Nasoseptal Cells

期刊

JOURNAL OF SURGICAL RESEARCH
卷 163, 期 2, 页码 331-336

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jss.2010.03.070

关键词

poly(vinyl alcohol); hydrogel; cartilage; nasoseptal chondrocytes; tissue engineering

类别

资金

  1. American Society of Maxillofacial
  2. Massachusetts General Hospital

向作者/读者索取更多资源

Background. Limited options exist for the restoration of craniofacial cartilage. Autologous tissue or porous polyethylene is currently used for nasal and auricular reconstruction. Both options are associated with drawbacks, including donor site morbidity and implant extrusion. Poly(vinyl alcohol) (PVA) is a non-degradable flexible biocompatible polymer than can be engineered to mimic the properties of cartilage. The goal of this study was to engineer a biosynthetic hybrid construct using a combination of PVA-alginate hydrogels and human nasal septum chondrocytes. Materials and Methods. Chondrocytes isolated from human nasal septum cartilage were expanded and mixed with 2% sodium alginate hydrogel. The chondrocyte-alginate mix was injected into a non-degradable porous PVA hydrogel, creating biosynthetic constructs. A group of these constructs were implanted into the subcutaneous environment of nude mice, while the other group was cultured in a spinner flask bioreactor system for 10 d and then implanted. After 6 wk in vivo, the histologic, biochemical, and biomechanical properties were examined. Results. Histological analysis demonstrated sulfated glycosaminoglycans and deposition of collagen type II in constructs from both groups. Constructs cultured in the bioreactor system prior in vivo implantation demonstrated higher levels of DNA, glycosaminoglycans, and hydroxyproline. An increase of 22% in the compressive strength of the engineered constructs exposed to the bioreactor was also observed. Conclusion. A novel porous PVA-alginate gel hybrid was used to successfully engineer human cartilage in vivo. A 10-d period of bioreactor culturing increased levels of DNA, glycosaminoglycans, hydroxyproline, and the compressive modulus of the constructs. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据