4.5 Article

Transcription Factor Nrf2 Plays a Pivotal Role in Protection Against Traumatic Brain Injury-Induced Acute Intestinal Mucosal Injury in Mice

期刊

JOURNAL OF SURGICAL RESEARCH
卷 157, 期 2, 页码 251-260

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jss.2008.08.003

关键词

nuclear factor E2-related factor 2; traumatic brain injury; intestine; inflammation; oxidative stress

类别

资金

  1. Jinling Hospital of China

向作者/读者索取更多资源

Background. Traumatic brain injury (TBI) can induce an acute intestinal mucosal injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) has a unique role in many physiological stress processes, but its contribution to intestinal mucosal injury after TBI remains to be determined. Materials and Methods. Wildtype Nrf2 (+/+) and Nrf2 (-/-) deficient mice were subjected to a moderately severe weight-drop impact head injury. Intestinal mucosal morphological changes, plasma endotoxin, intestinal permeability, apoptosis, inflammatory cytokines, and antioxidant/detoxifying enzymes were measured at 24 hours after TBI. Results. Nrf2 deficient mice were found to be more susceptible to TBI-induced acute intestinal mucosal injury, as characterized by the higher increase in gut structure damage, plasma endotoxin, intestinal permeability, and apoptosis after TBI. This exacerbation of intestinal mucosal injury in Nrf2 deficient mice was associated with increased intestinal mRNA and protein expression of inflammatory cytokines such as tumor necrosis factor-alpha, interleukin-1 beta and interleukin-6, and with decreased intestinal mRNA expression and activity levels of antioxidant and detoxifying enzymes including NAD(P)H: quinone oxidoreductase 1 (NQO1) and glutathione S-transferase alpha-1 (GST-alpha 1), compared with their wildtype Nrf2 ( +/+) counterparts after TBI. Conclusions. We show for the first time that mice lacking Nrf2 are more susceptible to TBI-induced acute intestinal mucosal injury. Our data suggests that Nrf2 plays an important role in protecting TBI-induced intestinal mucosal injury, possibly by regulating of inflammatory cytokines and inducing of antioxidant and detoxifying enzymes. (C) 2009 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据