4.5 Article

Rheology and density of glucose syrup and honey: Determining their suitability for usage in analogue and fluid dynamic models of geological processes

期刊

JOURNAL OF STRUCTURAL GEOLOGY
卷 33, 期 6, 页码 1079-1088

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsg.2011.03.013

关键词

Rheology; Glucose syrup; Honey; Corn syrup; Viscosity; Density; Coefficient of thermal volumetric expansion; Arrhenius function; Temperature; Analogue model; Fluid dynamics

资金

  1. Australian Research Council [DP0771823, DP110103387]
  2. Monash University
  3. Australian Academy of Science
  4. Australian Research Council [DP0771823] Funding Source: Australian Research Council

向作者/读者索取更多资源

Analogue models of lithospheric deformation and fluid dynamic models of mantle flow mostly use some kind of syrup such as honey or glucose syrup to simulate the low-viscosity sub-lithospheric mantle. This paper describes detailed theological tests and density measurements of three brands of glucose syrup and three brands of honey. Additional tests have been done for one brand of glucose syrup that was diluted with water to various degrees (2%, 5% and 10% by weight). The theological tests have been done to test the effect of shear strain, shear rate and temperature on the dynamic viscosity of the syrup. The results show that the viscosity of all glucose syrups and honeys is independent of shear strain (i.e. no strain hardening or softening). The viscosity of the glucose syrups is independent of shear rate ((gamma) over dot), i.e. linear-viscous or Newtonian, in the range gamma over dot = 10(-4)-10(0) s(-1) with stress exponents that are almost identical to one (n = 0.995-1.004). All the honeys show a very weak, but consistent, decrease in viscosity with increasing shear rate of 7-14% from 10(-3) to 10(0) s(-1) and have stress exponents more distinct from one (n = 1.007-1.026). All syrups have a viscosity that is strongly dependent on temperature in the range 0-50 degrees C, where viscosity decreases with increasing temperature. Such decrease can be fitted with exponential and Arrhenius functions, with the latter giving the best results. Furthermore, the viscosity of glucose syrup decreases approximately exponentially with increasing water content. Oscillation tests indicate that the rheology of all the syrups is entirely dominated by viscous behaviour and not by elastic behaviour at frequencies of 10(-3)-10(2) Hz. Finally, the density investigations show that the density of glucose syrup and honey decreases approximately linearly with increasing temperature in the range 10 -70 degrees C, with coefficients of thermal volumetric expansion at 20 degrees C of 3.89-3.95 x 10(-4) degrees C-1 and 4.57 -4.81 x 10(-4) degrees C-1 for glucose syrup and honey, respectively. The new results demonstrate that glucose syrups and (to a lesser degree) honeys are well suited for usage in analogue and fluid dynamic experiments to represent linear-viscous strain independent and shear rate independent rheologies to model geological processes. Glucose syrups have the added advantage of being more transparent than honeys, allowing for accurately resolving and quantifying flow patterns in the fluid during a model run. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据