4.5 Article

The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: A field study from the Atacama fault system, northern Chile

期刊

JOURNAL OF STRUCTURAL GEOLOGY
卷 31, 期 8, 页码 802-816

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsg.2009.05.002

关键词

Fault damage zone; Fault zone; Damage zone scaling; Microfracture density; Deformation; Fracture density

资金

  1. Natural Environment Research Council [NE/C001117/1]
  2. University of Liverpool
  3. Natural Environment Research Council [NE/C001117/1] Funding Source: researchfish

向作者/读者索取更多资源

Damage surrounding the core of faults is represented by deformation on a range of scales from micro-fracturing of the rock matrix to macroscopic fracture networks. The spatial distribution and geometric characterization of damage at various scales can help to predict fault growth processes, subsequent mechanics, bulk hydraulic and seismological properties of a fault zone. Within the excellently exposed Atacama fault system, northern Chile, micro- and macroscale fracture densities and orientation surrounding strike-slip faults with well-constrained displacements ranging over nearly 5 orders of magnitude (similar to 0.12 m-5000 m) have been analyzed. Faults have been studied that cut granodiorite and have been passively exhumed from 6 to 10 km depth. This allows direct comparison of the damage surrounding faults of different displacements. The faults consist of a fault core and associated damage zone. Macrofractures in the damage zone are predominantly shear fractures orientated at high angles to the faults studied. They have a reasonably well-defined exponential decrease with distance from the fault core. Microfractures are a combination of open, healed, partially healed and fluid inclusion planes (FIPs). FIN are the earliest set of fractures and show an exponential decrease in fracture density with perpendicular distance from the fault core. Later microfractures do not show a clear relationship of microfracture density with perpendicular distance from the fault core. Damage zone widths defined by the density of FIPs scale with fault displacement but appear to reach a maximum at a few km displacement. One fault, where damage was characterized on both sides of the fault core shows no damage asymmetry. All faults appear to have a critical microfracture density at the fault core/damage zone boundary that is independent of displacement. An empirical relationship for microfracture density distribution with displacement is presented. Preferred FIP orientations have a high angle to the fault close to the fault core and become more diffuse with distance. Models that predict off-fault damage such as a migrating process zone during fault formation, wear from geometrical irregularities and dynamic rupture are all consistent with our data. We conclude it is very difficult to distinguish between them on the basis of field data alone, at least within the limits of this study. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据