4.7 Article

Ammonium-induced architectural and anatomical changes with altered suberin and lignin levels significantly change water and solute permeabilities of rice (Oryza sativa L.) roots

期刊

PLANTA
卷 243, 期 1, 页码 231-249

出版社

SPRINGER
DOI: 10.1007/s00425-015-2406-1

关键词

Apoplast; Barriers; Conductivity; Environment; Lignin; Pores; Roots; Suberin

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. German Research Foundation (DFG) [SCHR 506/12-1]

向作者/读者索取更多资源

Non-optimal ammonium levels significantly alter root architecture, anatomy and root permeabilities for water and nutrient ions. Higher ammonium levels induced strong apoplastic barriers whereas it was opposite for lower levels. Application of nitrogen fertilizer increases crop productivity. However, non-optimal applications can have negative effects on plant growth and development. In this study, we investigated how different levels of ammonium (NH4 (+)) [low (30 or 100 mu M) or optimum (300 mu M) or high (1000 or 3000 mu M)] affect physio-chemical properties of 1-month-old, hydroponically grown rice roots. Different NH4 (+) treatments markedly altered the root architecture and anatomy. Plants grown in low NH4 (+) had the longest roots with a weak deposition of suberised and lignified apoplastic barriers, and it was opposite for plants grown in high NH4 (+). The relative expression levels of selected suberin and lignin biosynthesis candidate genes, determined using qRT-PCR, were lowest in the roots from low NH4 (+), whereas, they were highest for those grown in high NH4 (+). This was reflected by the suberin and lignin contents, and was significantly lower in roots from low NH4 (+) resulting in greater hydraulic conductivity (Lp (r)) and solute permeability (P (sr)) than roots from optimum NH4 (+). In contrast, roots grown at high NH4 (+) had markedly greater suberin and lignin contents, which were reflected by strong barriers. These barriers significantly decreased the P (sr) of roots but failed to reduce the Lp (r) below those of roots grown in optimum NH4 (+), which can be explained in terms of the physical properties of the molecules used and the size of pores in the apoplast. It is concluded that, in rice, non-optimal NH4 (+) levels differentially affected root properties including Lp (r) and P (sr) to successfully adapt to the changing root environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据