4.4 Article

Use of Lifetime Functions in the Optimization of Nondestructive Inspection Strategies for Bridges

期刊

JOURNAL OF STRUCTURAL ENGINEERING
卷 137, 期 4, 页码 531-539

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)ST.1943-541X.0000304

关键词

Nondestructive inspection; Survival functions; Bayesian updating; Probability of detection; Optimization

资金

  1. National Science Foundation [CMS-0639428]
  2. Commonwealth of Pennsylvania, Department of Community and Economic Development, through the Pennsylvania Infrastructure Technology Alliance (PITA)
  3. U.S. Federal Highway Administration [DTFH61-07-H-00040]
  4. U.S. Office of Naval Research [N-00014-08-0188]

向作者/读者索取更多资源

A model using lifetime functions is used to evaluate the probability of survival of bridge components. The possible outcomes associated with nondestructive inspections (NDIs) are incorporated in an event-tree model. Each time a bridge component is inspected, different decisions can be made. The use of a lifetime function for each component of the structural system enables one to express the probability that the component survives. In theory (i.e., perfect inspection), each NDI should be associated with two possible outcomes: survival or failure. In the first case, no damage is detected and the probability density function of time to failure is updated knowing that the component has survived until the inspection. In the second case, damage is detected and maintenance action is planned. In practice, NDIs are subjected to uncertainties (i.e., imperfect inspections) and detecting or not detecting damage depends on the inspection quality (i.e., probability of detection). For poor-quality inspections, there is a significant risk to overestimate the probability of safe performance. The aim of this paper is to provide a practical methodology for determining optimal NDI strategies for different components of steel bridges. The different types of inspections considered in this paper are visual, magnetic particle, and ultrasonic. An economic analysis is performed and NDI strategies are optimized by simultaneously minimizing both the expected inspection/maintenance cost (i.e., the sum of inspection and maintenance costs) and the expected failure cost. The proposed approach is applied to an existing steel bridge. DOI: 10.1061/(ASCE)ST.1943541X.0000304. (C) 2011 American Society of Civil Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据