4.7 Article

Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato

期刊

PLANT SCIENCE
卷 231, 期 -, 页码 198-211

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.plantsci.2014.12.006

关键词

Abiotic stress; Cold tolerance; Dehydrin; Late embryogenesis abundant protein; Solanum; Tomato

资金

  1. National Natural Science Foundation of China [31301789]
  2. National High-tech R&D Program of China [2012AA100104]

向作者/读者索取更多资源

Dehydrins (DHNs) play important roles in plant adaptation to abiotic stress. In this study, a cold-induced SK3-type DHN gene (ShDHN) isolated from wild tomato species Solanum habrochaites was characterized for its function in abiotic stress tolerance. ShDHN was constitutively expressed in root, leaf, stem, flower and fruit. ShDHN was continuously up-regulated during cold stress and showed higher expression level in the cold-tolerant S. habrochaites than in the susceptible S. lycopersicum. Moreover, ShDHN expression was also regulated by drought, salt, osmotic stress, and exogenous signaling molecules. Overexpression of ShDHN in cultivated tomato increased tolerance to cold and drought stresses and improved seedling growth under salt and osmotic stresses. Compared with the wild-type, the transgenic plants accumulated more proline, maintained higher enzymatic activities of superoxide dismutase and catalase, and suffered less membrane damage under cold and drought stresses. Moreover, the transgenic plants accumulated lower levels of H2O2 and O-2(-) under cold stress, and had higher relative water contents and lower water loss rates under dehydration conditions. Furthermore, overexpression of ShDHN in tomato led to the up- or down-regulated expression of several genes involved in ROS scavenging and JA signaling pathway, including SOD1, GST, POD, LOX, PR1 and PR2. Taken together, these results indicate that ShDHN has pleiotropic effects on improving plant adaptation to abiotic stresses and that it possesses potential usefulness in genetic improvement of stress tolerance in tomato. (C) 2014 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据